Regulation of Ca2+/calmodulin-dependent protein kinase II catalysis by N-methyl-D-aspartate receptor subunit 2B.

نویسندگان

  • Kurup K Pradeep
  • John Cheriyan
  • Sudarsana Devi Suma Priya
  • Raveendran Rajeevkumar
  • Madhavan Mayadevi
  • Mullasseril Praseeda
  • Ramakrishnapillai V Omkumar
چکیده

Binding of CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) to the NR2B subunit of the NMDAR (N-methyl-D-aspartate-type glutamate receptor) in the PSD (postsynaptic density) is essential for the induction of long-term potentiation. In this study, we show that binding of NR2B to the T-site (Thr(286)-autophosphorylation site binding pocket) of CaMKII regulates its catalysis as reflected in the kinetic parameters. The apparent S(0.5) (substrate concentration at half maximal velocity) and V(max) values for ATP were lower for phosphorylation of a GST (glutathione transferase)-fusion of NR2B((1271-1311)) (with the phosphorylation site Ser(1303)) when compared with phosphorylation of the analogous sequence motif from NR2A. The co-operative behaviour exhibited by the CaMKII holoenzyme towards ATP for phosphorylation of GST-NR2A was significantly altered by the interaction with GST-NR2B. Disrupting the T-site-mediated binding by mutagenesis of either NR2B or CaMKII abolished the modulation of CaMKII activity by NR2B. The active site residue of alpha-CaMKII, Glu(96), participates in effecting the modulation. The CaMKII-binding motif of the Drosophila voltage-gated potassium channel Eag interacted with the T-site of CaMKII with lower affinity and caused catalytic modulation to a lesser extent. The kinetic parameters of ATP for the Thr(286)-autophosphorylation reaction of CaMKII were also altered by NR2B in a similar manner. Interestingly, the NR2B sequence motif caused increased sensitivity of CaMKII activity to ATP, and saturation by lower concentrations of ATP, which, in effect, resulted in a constant level of activity of CaMKII over a broad range of ATP concentrations. Our findings indicate that CaMKII at the PSD may be regulated by bound NR2B in a manner that supports synaptic memories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.

Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphory...

متن کامل

Calcium/Calmodulin Dependent Protein Kinase II Bound to NMDA Receptor 2B Subunit Exhibits Increased ATP Affinity and Attenuated Dephosphorylation

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B bindi...

متن کامل

N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.

Long term potentiation in hippocampus, evoked by high-frequency stimulation, is mediated by two major glutamate receptor subtypes, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptors. Receptor subunit composition and its interaction with cytoplasmic proteins constitute different pathways regulating synaptic plasticity. Here, we provide further evi...

متن کامل

Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor.

Calcium influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor and activation of calcium/calmodulin-dependent kinase II (CaMKII) are critical events in certain forms of synaptic plasticity. We have previously shown that autophosphorylation of CaMKII induces high-affinity binding to the NR2B subunit of the NMDA receptor (Strack, S., and Colbran, R. J. (1998) J. Biol. Chem. 273, 2...

متن کامل

Inactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit

NMDA (N-methyl-D-aspartate) receptors are excitatory neurotransmitter receptors in the brain critical for synaptic plasticity and neuronal development. These receptors are Ca2+-permeable glutamate-gated ion channels whose physiological properties are regulated by intracellular Ca2+. We report here the purification of a 20 kDa protein identified as calmodulin that interacts with the NR1 subunit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 419 1  شماره 

صفحات  -

تاریخ انتشار 2009